Sloan Devlin

Assistant Professor of BCMP

Seeley G. Mudd Building - Rm 617
250 Longwood Ave
Harvard Medical School
Boston, MA 02115
Tel:
Email: sloan_devlin@hms.harvard.edu

Website:
https://devlin.hms.harvard.edu/
Lab Size: Between 5 and 10

Summary
Our lab uses small molecules to study and manipulate human-associated bacteria in order to better understand how the microbiome affects human health and disease. The lab leverages expertise from different fields, including synthetic organic chemistry, molecular biology, microbiology, analytical chemistry, and bioinformatics. Project areas in the lab include:

1) Uncovering how and why bacteria metabolize bile acids. Bacteria in the large intestine transform human-derived primary bile acids into secondary bile acids in near-quantitative fashion. Secondary bile acids exert wide-ranging biological effects, from acting as causative agents in colon and liver cancer to binding nuclear receptors and initiating downstream metabolic cascades. Despite their important role in human health, we know very little about which bacteria metabolize bile acids or which genes are responsible. By uncovering how and why bacteria transform these compounds, we will pave the way for the rational alteration of the human gut microbiome to treat diseases such as inflammatory bowel disease and obesity.

2) Monitoring and altering bacterial metabolism in vivo. The composition and metabolic output of the gut bacterial community changes in response to diet, lifestyle, and other environmental factors. Our ability to understand these changes is limited because we rely on excretions or post-mortem analyses to study bacterial populations and metabolic products. We are designing, synthesizing, and utilizing activity-based small molecule probes to selectively monitor and affect bacterial metabolism in vivo.

3) Developing novel synthetic methods to access antibiotic scaffolds. Researchers in the human microbiome field need better tools to differentiate between and control the levels of pathogenic and commensal bacteria in vivo. In addition, there is a pressing medical need for new antibiotics targeting pathogenic bacteria. We are developing novel methods to rapidly access oxidized core structures found in selected classes of bioactive natural products with demonstrated antibiotic activity but for which no facile method of synthesis has yet been elucidated.

Publications

Devlin, A.S. & Fischbach, M.A. “A biosynthetic pathway for a prominent class of microbiota-derived bile acids.” Nat. Chem. Bio. 2015, 11, 685.
David, L.A., Maurice, C.M., Carmody, R.N., Gootenberg, D.B., Button, J.E., Wolfe, B.E., Ling, A.V., Devlin, A.S., Varma, Y., Fischbach, M.A., Biddinger, S.B., Dutton, R.J. & Turnbaugh, P.J. “Diet rapidly and reproducibly alters the human gut microbiome.” Nature, 2014, 505, 559.
Devlin, A.S. & Du Bois, J. “Modular Synthesis of the Pentacyclic Core of Batrachotoxin and Select Batrachotoxin Analogue Designs.” Chem. Sci., 2013, 4, 1053.
Wolckenhauer, S.A., Devlin, A.S. & Du Bois, J. “δ-Sultone Formation Through Rh-Catalyzed C–H Insertion.” Org. Lett. 2007, 9, 4363.